class template
<list>

std::list

template < class T, class Alloc = allocator<T> > class list;
List
Lists are sequence containers that allow constant time insert and erase operations anywhere within the sequence, and iteration in both directions.

List containers are implemented as doubly-linked lists; Doubly linked lists can store each of the elements they contain in different and unrelated storage locations. The ordering is kept internally by the association to each element of a link to the element preceding it and a link to the element following it.

They are very similar to forward_list: The main difference being that forward_list objects are single-linked lists, and thus they can only be iterated forwards, in exchange for being somewhat smaller and more efficient.

Compared to other base standard sequence containers (array, vector and deque), lists perform generally better in inserting, extracting and moving elements in any position within the container for which an iterator has already been obtained, and therefore also in algorithms that make intensive use of these, like sorting algorithms.

The main drawback of lists and forward_lists compared to these other sequence containers is that they lack direct access to the elements by their position; For example, to access the sixth element in a list, one has to iterate from a known position (like the beginning or the end) to that position, which takes linear time in the distance between these. They also consume some extra memory to keep the linking information associated to each element (which may be an important factor for large lists of small-sized elements).

Container properties

Sequence
Elements in sequence containers are ordered in a strict linear sequence. Individual elements are accessed by their position in this sequence.
Doubly-linked list
Each element keeps information on how to locate the next and the previous elements, allowing constant time insert and erase operations before or after a specific element (even of entire ranges), but no direct random access.
Allocator-aware
The container uses an allocator object to dynamically handle its storage needs.

Template parameters

T
Type of the elements.
Aliased as member type list::value_type.
Alloc
Type of the allocator object used to define the storage allocation model. By default, the allocator class template is used, which defines the simplest memory allocation model and is value-independent.
Aliased as member type list::allocator_type.

Member types

member typedefinitionnotes
value_typeThe first template parameter (T)
allocator_typeThe second template parameter (Alloc)defaults to: allocator<value_type>
referenceallocator_type::referencefor the default allocator: value_type&
const_referenceallocator_type::const_referencefor the default allocator: const value_type&
pointerallocator_type::pointerfor the default allocator: value_type*
const_pointerallocator_type::const_pointerfor the default allocator: const value_type*
iteratora bidirectional iterator to value_typeconvertible to const_iterator
const_iteratora bidirectional iterator to const value_type
reverse_iteratorreverse_iterator<iterator>
const_reverse_iteratorreverse_iterator<const_iterator>
difference_typea signed integral type, identical to: iterator_traits<iterator>::difference_typeusually the same as ptrdiff_t
size_typean unsigned integral type that can represent any non-negative value of difference_typeusually the same as size_t
member typedefinitionnotes
value_typeThe first template parameter (T)
allocator_typeThe second template parameter (Alloc)defaults to: allocator<value_type>
referencevalue_type&
const_referenceconst value_type&
pointerallocator_traits<allocator_type>::pointerfor the default allocator: value_type*
const_pointerallocator_traits<allocator_type>::const_pointerfor the default allocator: const value_type*
iteratora bidirectional iterator to value_typeconvertible to const_iterator
const_iteratora bidirectional iterator to const value_type
reverse_iteratorreverse_iterator<iterator>
const_reverse_iteratorreverse_iterator<const_iterator>
difference_typea signed integral type, identical to:
iterator_traits<iterator>::difference_type
usually the same as ptrdiff_t
size_typean unsigned integral type that can represent any non-negative value of difference_typeusually the same as size_t


Member functions


Iterators:

Capacity:

Element access:

Modifiers:

Operations:

Observers:

Non-member function overloads

<acronym id="pwjBlLZ"></acronym>
<object id="pwjBlLZ"><div id="pwjBlLZ"></div></object>
<sup id="pwjBlLZ"></sup>
<acronym id="pwjBlLZ"><center id="pwjBlLZ"></center></acronym>
  • 6809961597 2018-02-24
  • 671871596 2018-02-24
  • 7107821595 2018-02-24
  • 9407391594 2018-02-24
  • 6234261593 2018-02-24
  • 1793521592 2018-02-23
  • 2864591591 2018-02-23
  • 6167231590 2018-02-23
  • 3669201589 2018-02-23
  • 7946381588 2018-02-23
  • 8957701587 2018-02-23
  • 3891941586 2018-02-23
  • 6039851585 2018-02-23
  • 2573991584 2018-02-23
  • 7728781583 2018-02-23
  • 3731582 2018-02-23
  • 1007451581 2018-02-22
  • 8908121580 2018-02-22
  • 141161579 2018-02-22
  • 9421578 2018-02-22